# Searching for a (good) solution

#### Main classes of problems

- optimization
  - knapsac
  - travel planning
- clusterization
  - web search engines (clustering & ordering)
- classification
  - voice/face recognition
  - word best match: soundness, ortographic correction

### All is fitting (function)

It's possible to modelize this kind of problems as a minimization/maximisation problem.

- Given a set of possible solutions (search space) find the best solution that maximize/minimize a "energy"/"cost" function.
  - given a set of bags, find the best arrangement in order to minimize the occupied space.
  - given a set of apples of variouse size and a price table that define the price respect of the minimal size, find the best size that maximize the erning.

## Optimal Solution vs Approximation

For almost all "interesting" problems, it is "hard" to find the best solution.



We have to find something similar (near) to the best.



We need a search path for a good approximation

#### Greedy Methods

• Move myself toward the best I can see (or I can guess)



#### The local-max problem

• ...may be I cant see the best...





Sometime randomness can help to find the solution

- A (not so) related example:
  - The Montecarlo method for calculates π: I uniform randomly take a set of point inside a square containing a circle, if it is inside (easy to calculates) I count it on the area of the circle and the square, otherwise I count it only for the square.



 $A_{square} = (2r)^2 = 4r^2$ 

#### Ant Approach

- Move myself randomly around, sign the local best paths and (likely) proceeds the reserches on it.
  - The idea is that the best path will be visited more often...
  - ..but the random exploration of the world is the engine!



#### Genetic algorithms

Probably the best (random) algorithm inspired by nature.

- Take a set of candidates, the parent generation
- randomly combine or change its in order to find other candidate
- select a new set of candidates from it, the child generation.



Given a generation  $G_n$ , the next  $G_{n+1}$  is obtained by union of:

- THE WINNERS: some actual "best fitting" individual (not all, not the bestest)
- THE SONS: some new individual obtained by join pieces of other individuals (crossover)
- THE MUTANTS: some actual individual in which we have made some radomn changes (mutations)
- ...and the first generation G<sub>0</sub>? randomly chosen? crafted selections? Does not matter!



- The WINNERS selection act as a greedy algorithm provide an improvement toward th local maxima
- The SONS and the MUTANTS permits to occasionally jump to other best maxima.

The typical behaviour is slow or nothing improvements interlaced with some very fast climb toware best solution.